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Molecular correlates of cisplatin-based
chemotherapy response in muscle invasive
bladder cancer by integrated multi-omics analysis
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Michael Knudsen 1, Jakob Skou Pedersen 1,2, Torben Steiniche3, Mads Agerbæk 4,

Jørgen Bjerggaard Jensen2,5 & Lars Dyrskjøt 1,2✉

Overtreatment with cisplatin-based chemotherapy is a major issue in the management of

muscle-invasive bladder cancer (MIBC), and currently none of the reported biomarkers for

predicting response have been implemented in the clinic. Here we perform a comprehensive

multi-omics analysis (genomics, transcriptomics, epigenomics and proteomics) of 300 MIBC

patients treated with chemotherapy (neoadjuvant or first-line) to identify molecular changes

associated with treatment response. DNA-based associations with response converge on

genomic instability driven by a high number of chromosomal alterations, indels, signature 5

mutations and/or BRCA2 mutations. Expression data identifies the basal/squamous gene

expression subtype to be associated with poor response. Immune cell infiltration and high

PD-1 protein expression are associated with treatment response. Through integration of

genomic and transcriptomic data, we demonstrate patient stratification to groups of low and

high likelihood of cisplatin-based response. This could pave the way for future patient

selection following validation in prospective clinical trials.
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B ladder cancer (BC) is the 9th most commonly diagnosed
cancer worldwide and each year responsible for 165,000
deaths1. One of four patients with BC presents with muscle

invasive disease. The standard of care for patients with localized
muscle-invasive bladder cancer (MIBC) is neoadjuvant che-
motherapy (NAC) followed by radical cystectomy. However, up
to 40% of patients experience relapse after radical cystectomy and
the vast majority of these succumb to the disease2. Cisplatin-
based chemotherapy is recommended in both the neoadjuvant
and first-line setting, with response rates up to ~50%3,4. However,
no robust predictive biomarkers for chemotherapy response have
entered into routine clinical use, and the inability to predict which
patients will respond to chemotherapy represents a major clinical
problem, as significant overtreatment of patients not responding
is currently performed.

The genomic landscape of MIBC has been characterized as
highly heterogeneous, with a high mutational burden and geno-
mic instability caused by a multitude of processes like defects in
DNA repair pathways, APOBEC induced mutagenesis, and
overall high levels of mutagenesis from environmental chemical
exposure5–7. Somatic mutations in DNA damage repair genes
(DDR; e.g., ERCC2, ATM, RB1, and FANCC) have been corre-
lated with cisplatin-sensitivity in MIBC7–9, and the impact of
ERCC2 mutations has been demonstrated to drive cisplatin sen-
sitivity in xenograft models10. However, ERCC2 mutations have
not been found to be associated with increased cisplatin sensi-
tivity in all studies, highlighting that alternative and complex
biological pathways may underlie treatment response
mechanisms11,12. Ongoing clinical trials aim to validate DDR
mutations as biomarkers for directing patients to bladder sparing
approaches (e.g., NCT03609216). Transcriptional molecular
classification of MIBC have shown the p53-like subtype to be
correlated with poor response to NAC13, and that patients with
basal-like tumors showed increased survival following NAC
compared to patients with basal tumors potentially treated with
chemotherapy at the time of metastasis. Notably, the subtypes
were, however, not shown to be significantly associated with
pathologic response14. Furthermore, in a recent meta analysis,
MIBC consensus subtypes were not significantly correlated with
chemotherapy response15. Recently, we showed that circulating
tumor DNA (ctDNA) measurements may constitute a powerful
biomarker for monitoring treatment efficacy during NAC12,
indicating that a combined tumor centric and liquid biopsy
approach may be a stronger tool for directing patients to optimal
treatment.

Antitumor activities of chemotherapy besides DNA-synthesis
and replication interference, have been shown to be promoted by
the host immune system in several cancer types16. In BC it has
been hypothesized that chemotherapy reinforces the antitumor
immune response, and a higher ratio of cytotoxic T lymphocytes
(CTLs) to activated regulatory T lymphocytes (Tregs) has been
observed in responding patients17. However, the predictive value
of the pre-treatment tumor microenvironment immune cell
composition has received little attention.

Overall, predictive biomarkers of chemotherapy response have
not shown consistency among studies - most likely due to small
cohorts, inconsistency in treatment regimes, or treatment out-
come reporting. Here, we report a multi-omics analysis of clini-
cally well-annotated biological materials from 300 patients
with BC, with the aim to identify molecular correlates of
cisplatin-based chemotherapy response. We demonstrate that
genomic instability driven by a high number of chromos-
omal alterations, indels, mutations in a tri-nucleotide signature 5
context and/or BRCA2 mutations is associated with treatment
response. Furthermore, we show that the basal/squamous gene
expression subtype is associated with poor response and immune

cell infiltration and high PD-1 protein expression are associated
with treatment response. Finally, through integration of genomic
alterations and gene expression subtypes we identify patient
groups with vastly different response rates. Our findings provide
insight into the mechanisms associated with cisplatin-based
treatment response, which could aid future personalized treat-
ment in BC.

Results
Clinicopathological and multi-omics molecular data. To
investigate molecular correlates associated with treatment response,
we included 300 tumors from patients with BC receiving che-
motherapy; 62 received NAC before cystectomy (CX) and 245
received first-line chemotherapy upon detection of locally-
advanced (T4b) or metastatic disease (Supplementary Fig. 1a;
Supplementary Data 1; Supplementary Tables 1 and 2). An over-
view of the molecular analyses performed is provided in Supple-
mentary Fig. 1b. Treatment response, defined as pathological
noninvasive downstaging (≤pTa,CIS,N0) after NAC or complete or
partial response after first-line treatment (RECIST 1.1), was
observed for ~57% of patients (n= 172/300, NAC: ~63%, first-
line: ~55%).

Tumor-specific DNA alterations. WES was performed using
DNA from 165 tumors (76× median coverage, median of 92%
target bases at 20X) and associated leukocyte germline DNA (46×
median coverage, median of 85% target bases at 20X). A median
of 524 (35–8231) mutations and 41 (6–2171) indels per tumor
were identified. An overview of genomic data from WES is pre-
sented in Fig. 1a and Supplementary Fig. 2a (focus on sig-
nificantly mutated genes in this study and TCGA cohort,
respectively). For patients responding to chemotherapy, we
observed a significantly higher number of indels (p= 0.031;
SNVs: p= 0.38; neoantigens: p= 0.17; Wilcoxon rank-sum test;
Fig. 1b–d) and a significantly higher proportion of the genome
under allelic imbalance (SNP arrays (n= 49); p= 0.024; Wil-
coxon rank-sum test; Fig. 1e), indicating that a more disrupted
genome is more sensitive to treatment with chemotherapy. To
further address genome disruption, we computed the micro-
satellite instability (MSI) status for all patients, however, MSI
status was not associated with genome disruption or che-
motherapy response in this study (Supplementary Fig. 2b). In
addition, we identified chromosome 18 and regions 2p25.3-p22.1,
11p15.5-p11.2, and 12q13.3-q21.31 to be more affected by allelic
imbalance in patients responding to chemotherapy compared to
patients not responding (Supplementary Fig. 3). We, furthermore,
investigated nonsense and missense mutations classified as
damaging (according to PolyPhen-218 and MutationAssessor19)
in DDR related genes (Supplementary Table 3), but found no
association between DDR gene mutation status and chemother-
apy response (Fig. 1f).

Following, we conducted analysis of mutational processes using
the previously identified signatures in BC5,6: Single Base
Substitution 1(SBS1;age-related), SBS2 and SBS13 (APOBEC
related), and SBS5 (ERCC2 mutation related20). Samples whose
mutational trinucleotide profile could not be well explained by
only using these four signatures were not considered for signature
analysis. Overall, tumors could be assigned to two major groups
based on the mutational process responsible for the majority of
the mutations: SBS2+13 associated tumors (SBS APO) and SBS5
associated tumors (Fig. 1a). SBS APO tumors showed a
higher number of SNVs (p= 3.1e−7; Wilcoxon rank-sum test;
Fig. 1g) and SBS5 tumors harbored more indels (p= 0.054;
Wilcoxon rank-sum test; Fig. 1h). Proportion of the genome
under allelic imbalance did not differ between the two groups
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Fig. 1 Overview of the genomic alterations correlated to chemotherapy response. a Oncoplot showing the significantly mutated genes in 165 tumors
annotated by exome coverage, mutation load stratified by impact (as defined by SnpEff) and mutational signature deconvolution (top panels) and by
clinical response, neoantigen load, number of damaging mutations in DDR genes, percentage of genome in allelic imbalance, expression subtypes, regulon
cluster, RNA immune score, hypermethylation cluster and immune phenotype (bottom panel). b–e Violin plots showing the total number of SNVs, indels,
neoantigens or the percentage of the genome in allelic imbalance compared to chemotherapy response. f Presence of damaging DDR mutations compared
to chemotherapy response. g–i Violin plots showing the total number of SNVs, indels or the percentage of the genome in allelic imbalance compared to the
two main mutational subtypes. j Presence of DDR mutations compared to the two main mutational subtypes. k Mutational subtypes compared to
chemotherapy response. All p-values were calculated using a Wilcoxon rank-sum test for continuous variables and a Fisher’s exact test for categorical
variables. Source data are provided as a Source data file.
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(Fig. 1i). However, we observed that SBS APO tumors contained a
significantly higher fraction of tumors with damaging DDR gene
mutations compared to SBS5 tumors (p= 0.002; Fisher’s exact
test; Fig. 1j). Interestingly, patients with SBS5 tumors showed a
higher response rate to chemotherapy compared to patients with
SBS APO tumors (p= 0.046; Fisher’s exact test; Fig. 1k).

We further characterized the mutational landscape by
investigating the number of mutations and specific genes
associated with each major mutational signature. We identified
a higher number of mutations in a SBS5 context among patients
responding to chemotherapy (Fig. 2a). This was not observed for
SBS2+13 or SBS1 (Supplementary Fig. 4a). ERCC2 mutated
tumors have previously been associated with a high number of
SBS5 mutations20. Here, we observed no association between
ERCC2 mutated tumors and elevated response rates (Fig. 2b), as
previously observed8. We consequently hypothesized that other
genes may be associated with a high number of SBS5 mutations
and an elevated response rate. We delineated somatic mutations
(high and moderate impact defined by SnpEff21) associated with a
SBS5 dominated mutational landscape and identified BRCA2 and
ERCC2 mutated tumors to be significantly enriched for SBS5
mutations (p= 0.0003, p= 0.00003, respectively; permutation
test; Fig. 2c), together with a few other genes like ABCA6, TEP1,
and BOD1L1 (p= 0.00078, p= 0.00085, p= 0.00168, respectively;
permutation test; Fig. 2c). BRCA2 and ERCC2 mutated tumors
were not significantly enriched for mutations in an APOBEC
(SBS2+13) context (Fig. 2d). Importantly, patients with BRCA2
mutated tumors had a significantly higher response rate to
chemotherapy compared to patients with BRCA2 wild-type (wt)
tumors (p= 0.017; Fisher’s exact test; Fig. 2e). Kaplan–Meier
survival analysis indicated improved survival for BRCA2 mutated
patients (p= 0.11; log-rank test; Fig. 2f). In TCGA data, BRCA2
and ERCC2 mutated samples similarly demonstrated elevated
numbers of SBS5 mutations, however, they also demonstrated
elevated numbers of mutations in an APOBEC (SBS2+13)
context (Fig. 2g, h and Supplementary Fig. 4b). Importantly, in
TCGA, all patients with BRCA2 mutated tumors receiving
cisplatin-based chemotherapy (n= 6 out of 62 patients)
responded (vs. 34/56 for BRCA2 wt, p= 0.08; Fisher’s exact test;
Fig. 2i), while 6/7 patients with ERCC2 mutated tumors
responded (vs. 34/55 for ERCC2 wt, p= 0.40; Fisher’s exact test;
Fig. 2j).

Genomic analysis of paired primary and metastatic lesions. In
this study, we assessed tumor-specific alterations associated with
chemotherapy response based on primary tumor specimens,
however in ~30% (49/165 patients) the primary tumors were
removed, and chemotherapy response evaluation was based on
image analysis of the metastatic sites. To assess if molecular
correlates of chemotherapy response identified in primary tumors
persist in metastatic lesions, we performed WES of DNA from
available metastatic lesions (n= 11) from six patients (Fig. 3a) to
a median read depth of 100X. The clonal relationships between
primary tumors and associated metastatic lesions are illustrated
in Fig. 3b. We identified a median of 390 mutations shared
between primary tumors and metastatic lesions (range:
173–1350) and a median of 29 mutations (range: 0–87) in pri-
mary tumors that were not present in the respective metastatic
samples. This corresponds to a median fraction of only 7%
(range: 0–23%) of all mutations in primary tumors that were not
carried over to metastatic lesions (Fig. 3c). In metastatic samples,
the mutations shared with primary tumors demonstrated sig-
nificantly higher allele frequencies compared to private mutations
(Fig. 3d). This suggests that most of the primary tumor mutations
appeared to be clonal in the metastasis. Additionally, the large

number of novel low-frequency mutations in metastatic lesions
probably indicates the simultaneous development of multiple
subclones.

Our primary tumor analysis demonstrated a higher che-
motherapy response rate for patients with tumor mutational
landscapes dominated by SBS5. We, therefore, compared the
mutational processes underlying the mutational landscape of the
primary tumor to that of the metastases (Fig. 3e). In three
patients, the majority of both shared and private mutations were
observed in an SBS5 context. For the remaining three patients, the
majority of trunk mutations were observed in a SBS2+13
(APOBEC) context while the majority of private mutations in
the metastatic samples were observed in an SBS5 context. This
suggests APOBEC mutagenesis may primarily occur before
metastatic dissemination, whereas SBS5 shapes the mutational
landscape of metastatic lesions.

Gene expression analysis. Gene expression consensus subtypes
were called based on RNA-Seq data (n= 121)15 with the fol-
lowing distribution: LumP: 36.4%, LumNS: 0%, LumU: 21.5%,
Stroma-rich: 14.9%, Ba/Sq: 26.4%, NE-like: 0.8%. Assigned
subtypes were validated based on expression of basal-, luminal-,
immune-, extracellular matrix- and FGFR3- related markers
(Fig. 4a). We observed a high response rate in stroma-rich
tumors and a low response rate in Ba/Sq tumors, but the overall
difference in response rates was not significant (p= 0.11;
Fisher’s exact test), as previously reported12,15. However, we did
observe a significantly lower response rate in Ba/Sq tumors
compared to the other tumor subtypes (p= 0.030; Fisher’s exact
test; Fig. 4b). Overall survival was significantly reduced in
patients with Ba/Sq tumors compared to patients with other
gene expression subtypes (p= 0.034; log-rank test; Fig. 4c).
Integration of WES data revealed similar numbers of mutations
between gene expression subtypes, however, LumU tumors
harbored significantly more mutations than LumP tumors (p=
0.007; Wilcoxon rank-sum test; Fig. 4d), as expected15. Similar
numbers of indels were observed between the gene expression
subtypes (p= 0.65; Kruskal–Wallis rank-sum test). We
observed no associations between gene expression subtypes and
clusters based on mutational signatures (p= 0.86; Fisher’s
Exact test).

We further explored the transcriptional landscape by analyzing
gene expression of a group of co-regulated genes associated with a
predefined list of transcription factors (i.e., regulons; Supplemen-
tary Table 4). Three clusters were identified showing distinct
regulon activity patterns (Fig. 4e). Regulon clusters were found to
overlap with expression subtypes: 89% of the tumors in regulon
cluster 1 (R1) were luminal, 100% of the tumors in regulon cluster
2 (R2) were basal or stroma-rich, and regulon cluster 3 (R3)
contained a mixture of expression subtypes (Fig. 4f). No
significant association between regulon clusters and chemother-
apy response was observed (Fig. 4g).

Previous studies have identified an association between
immune cell infiltration and response to chemotherapy, suggest-
ing that the presence of immune cells increases treatment
efficacy16,22. We, therefore, quantified the presence of immune
cells in the tumors by deconvolution of the bulk RNA-Seq data
(Fig. 4e). We observed significant differences between expression
subtypes and immune cell infiltration, i.e., basal and stroma-rich
tumors showed a higher level of immune infiltration compared to
luminal tumors (Fig. 4h). Immune infiltration per se was,
however, not associated with response to chemotherapy (Fig. 4i
and Supplementary Fig. 5a). Grouping patients based on immune
infiltration and neoantigen load neither displayed an association
with response to chemotherapy (Supplementary Fig. 5b). We,
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therefore, speculated whether the presence of mutations and an
effective machinery for neoantigen presentation would be a
prerequisite for an effective immune response. Overall, the
number of mutations and indels showed no association with
immune infiltration levels (Supplementary Fig. 5c). However, for
tumors with high levels of immune infiltration, we found a trend
towards higher expression of neoantigen presenting genes23 for

patients responding to chemotherapy compared to non-
responders (p= 0.069; Wilcoxon rank-sum test; Fig. 4j).

Methylation alterations. Illumina EPIC arrays were used to
investigate if methylation alterations were associated with che-
motherapy response (n= 72). We performed unsupervised

a

VAF
0.0

0.2

0.4

0.6

0.8

b

c

d

100 mutations

Patient 3

P M26 mo.

n 
=

 8
97

0.00

0.25

0.50

0.75

1.00
0.60

*
*

P M
1

ARID1A
BRCA2
ARHGAP5 (x2)
RAD51C
RAF1
PIK3CA

PALB2

65%

P M12 mo.

Patient 4

 M1  M1.2

M1.1

0.00

0.25

0.50

0.75

1.00

*
0.026

5.5e–10

KRAS
GRIN2A
BRCA1
KMT2C
RECQL4

ASXL1

ARID1B KMT2D

Patient 5

P M 1 mo.

n 
=

 3
81

0.00

0.25

0.50

0.75

1.00

V
A

F

V
A

F

V
A

F

V
A

F

V
A

F

0.85
1.5e–13

*

P M
1

KMT2D
FGFR3

49%

Patient 2

P M5 mo.

M1

M1.1

0.00

0.25

0.50

0.75

1.00

*

2.3e–12
*

ELF3
ERBB3
ARHGAP5
TRIP11
CREBBP
NCOR1
NF1
MSH2
EP300
ATR
TRRAP
CDKN2A
STAG2

MECOM

Patient 1

P M23 mo.

n 
=

 1
45

3

0.00

0.25

0.50

0.75

1.00
*

*
*

P M
1

M
2

M
2.

1

ARID1A
ARID2 (x4)
TP53
EP300
PIK3CA (x2)
RAD50
PSIP1
STAG2

ERBB2
TRRAP ARID2

BLM
EP300HSPG2

49%

Patient 6

P M107 mo.

n 
=

 4
33

0.00

0.25

0.50

0.75

1.00

V
A

F

0.43
*

*

P M
1

ATM (x2)
CREBBP
PIK3CA
FGFR3
CDKN1A
KMT2C
STAG2
KDM6A

BRD4

40%

n 
=

 1
84

6
P M

1

M
1.

1

n 
=

 1
07

9

P M
1

M
1.

1
M

1.
2

73%

19%

M1

M2 M2.1

e

Trunk

Private (P)

Branch

Ambiguous

Trunk (P)

Trunk (M)

Branch

Mutational signatures
SBS1

SBS2

SBS5

SBS13

Trunk Branch

n = 173 n = 244n = 187 n = 177n = 202 n = 731n = 579 n = 318n = 1350 n = 389n = 708 n = 679

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18640-0

6 NATURE COMMUNICATIONS |         (2020) 11:4858 | https://doi.org/10.1038/s41467-020-18640-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


consensus clustering using tumor-associated hyper- or hypo-
methylated CpG sites (Fig. 5a and Supplementary Fig. 6). For
hypermethylated CpG sites, we identified three major hyper-
methylation clusters (HMC1–3): two extreme clusters, HMC2
and HMC3, and one intermediate, HMC1 (Fig. 5a). HMC2
almost exclusively consisted of samples with luminal gene
expression subtypes (83% luminal vs 61% and 31% for HMC1
and 3, respectively; Fig. 5b) and showed a methylation profile very
dissimilar to normal bladder tissue and leukocytes. Contrarily,
HMC3 was highly similar to normal bladder tissue and leukocytes
and showed a higher fraction of samples with stroma-rich gene
expression subtypes (37% stroma-rich vs 6% and 0% for HMC1
and 2, respectively; Fig. 5b). In addition, HMC3 showed sig-
nificantly higher gene expression scores attributable to immune
infiltration, stroma content and microenvironment contribution.
Similar gene expression scores for smooth muscle cells were
observed between methylation clusters (Fig. 5c). Collectively,
these findings indicate that HMC3 represents a group of tumors
characterized by high immune cell infiltration and probably few
carcinoma cells. We observed no correlation between methylation
clusters and response to chemotherapy (Fig. 5d).

Spatial proteomics analysis by digital pathology. We performed
multiplex immunofluorescence and immunohistochemical stain-
ing to analyze the spatial composition of tumor- and immune
cells (T-Helper, CTLs, Tregs, B-cells, M1, and M2 macrophages)
and immune evasion mechanisms (PD-L1, PD-1, and MHC class
I) in 184 patients who received first-line chemotherapy. All
antibodies used are listed in Supplementary Data 2. Automated
image analysis algorithms were developed to compare fractions of
selected markers intratumoral versus peritumoral (Supplemen-
tary Fig. 7). Based on the spatial tumor- and immune cell com-
positions we grouped the tumors into three main immune
subtypes: immune infiltrated, immune excluded and immune
desert, as previously reported24,25 (Fig. 6a, b). Response to che-
motherapy was more frequently observed in patients with the
immune excluded and infiltrated subtypes compared to the
immune desert subtype (p= 0.006; chi-square test; Fig. 6c). No
difference in overall survival was observed between immune
subtypes (p= 0.12; log-rank test; Fig. 6d). In addition, we
investigated immune evasion mechanisms and found that a high
fraction of intratumoral or peritumoral PD-1 positive cells was
significantly associated with treatment response (p= 0.008, p=
0.002, respectively; Wilcoxon rank-sum test; Fig. 6e). No corre-
lation between PD-L1 positive cells or MHC class I on tumor cells
and treatment response was observed (Fig. 6f, g). A combined
analysis of intratumoral PD-1 and PD-L1 expression also showed
significant correlation with chemotherapy response (p= 0.030;
chi-square test; Fig. 6h). We further explored immune evasion
mechanisms within immune subtypes and found that immune
infiltrated tumors were accompanied by a high frequency of cells

displaying intratumoral PD-1, PD-L1, and MHC expression
(Fig. 6i–k). These features suggest that immune cells are able to
migrate into the tumor parenchyma, however, the antitumor
response might be less effective due to immunosuppression.
Immune desert tumors showed a lower fraction of PD-1 positive
cells compared to the other subtypes (Fig. 6i). Furthermore,
downregulation of MHC class I on tumor cells was observed in
the immune desert and excluded tumors, which could explain the
lack or retention of immune cells in the stroma surrounding the
tumor parenchyma (Fig. 6k).

Integrative multi-omics analysis. An integrative analysis of
genomics, transcriptomics and proteomics data enabled us to
further examine possible biological differences between respon-
ders and non-responders of chemotherapy. The genomic features
associated with response in this study seemed to converge on
inefficient DNA damage response. We, therefore, assigned
patients to high and low genomic instability groups based on
SBS5 mutations, indels, allelic imbalance and BRCA2 mutation
status. Patients with high genomic instability had a response rate
of 71% vs. 49% for patients with low genomic instability (p=
0.007; chi-square test; Fig. 7a). For integration with tran-
scriptomic and proteomics data, we focused on patients with gene
expression subtypes assigned using RNA-seq data (n= 121;
Fig. 7b). The Ba/Sq gene expression subtype was associated with a
lower response rate compared to patients with other subtypes (p
= 0.027; chi-square test; Fig. 7c). For further investigation of the
predictive value of molecular and clinical features, we dichot-
omized the data for every variable and calculated odds ratios for
chemotherapy response. Indels, SBS5 mutations, BRCA2 muta-
tions, level of genomic instability, Ba/Sq gene expression subtype,
and IHC-based immune subtypes showed a significant associa-
tion with response (p= 0.004–0.021; Fisher’s exact test; Fig. 7d).
Molecular variables were generally more significant for patients
whose response was evaluated based on the primary tumors
(NAC) compared to metastatic lesions (first line), but similar
trends were observed. Among the clinical features, only perfor-
mance status prior to first-line chemotherapy displayed a sig-
nificant association with response (p= 0.025; Fisher’s exact test;
Fig. 7d). Since the majority of patients (~98%) were treated with
cisplatin-based chemotherapy, we integrated genomic instability
measures and gene expression subtypes for these patients to
assess the impact on response rates. This revealed that while high
genomic instability is associated with elevated response rates, the
Ba/Sq subtype was associated with reduced response rates across
the genomic instability groups (Fig. 7e). Importantly, this com-
bined analysis identifies a group of patients with a very high
response rate (80%; NAC: 90%; First-line: 71%) characterized by
high genomic instability and non-Ba/Sq gene expression subtype
and a group of patients with a very low response rate (25%; NAC:
20%; First-line: 29%) characterized by low genomic instability

Fig. 3 Delineation of metastatic evolution before chemotherapy. All six patients were treated with cisplatin-based chemotherapy upon detection of
metastatic disease. a Location of metastasis and the time to recurrence (mo=months). P= primary tumor, M=metastasis. The images were created
using Biorender.com. b Clonal relationships between primary tumor samples and metastatic lesions depicted by phylogenetic trees. Trunk/branch lengths
correspond to the number of SNVs. Mutations in genes involved in DDR, frequently mutated in TCGA or identified as drivers in BC (IntOGen62) are
indicated. Green= trunk, yellow= branch, blue= primary tumors, pink=metastatic lesions. c Variant allele frequencies for mutations identified in either of
the available samples per patient. Identified mutations were subjected to read-counting in processed bam files to enable identification of mutations called
in one sample, and present, but not called in another sample. The required read depth for identifying a given mutation was calculated for every position
based on the lowest observed allele frequency. Only positions with sufficient read depth in all investigated samples were included. d Box plots depicting the
observed allele frequencies for trunk and branch mutations. Asterisks indicate p-values below 2.2e−16. e Relative contribution of mutational signatures in
the trunks (left circles) and branches (right circles). P-values were calculated using a Wilcoxon rank-sum test. For all boxplots, the center line represents
the median, box hinges represent first and third quartiles, whiskers represent ±1.5 × interquartile range (IQR) and points represent outliers. Source data are
provided as a Source data file.
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Fig. 4 Gene expression characteristics and relation to chemotherapy response. a Visualisation of four identified consensus gene expression subtypes by
selected gene sets. b Gene expression subtypes compared to chemotherapy response. c Kaplan–Meier survival analysis showing the probability of overall
survival for patients with and without Ba/Sq gene expression subtype. d Number of mutations for gene expression subtypes. e Heatmap showing relative
expression values for identified regulons and deconvoluted immune cells. f Regulon clusters compared to gene expression subtypes. g Regulon clusters in
relation to response to chemotherapy. h Immune score across the identified gene expression subtypes. i Immune score compared to response to
chemotherapy. j Summarized expression of the antigen-presenting machinery for immune hot (above median immune score) samples stratified by RECIST
1.1 response values. Only one tumor was classified as NE-like and was therefore omitted from this figure. Missing data is depicted in gray. P-values were
calculated using a Fisher’s exact test for categorical variables, a Wilcoxon rank-sum test for continuous variables and a log-rank test for comparing survival
curves. For all boxplots, the center line represents the median, box hinges represent first and third quartiles, whiskers represent ±1.5 × interquartile range
(IQR) and points represent outliers. Source data are provided as a Source data file.
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and Ba/Sq gene expression subtype (p= 4.3e-4; NAC: p= 0.006;
First-line: p= 0.077; chi-square test; Supplementary Fig. 8).

Discussion
To capture the complex interplay between tumor biology and
possible cisplatin-based chemotherapy response and resistance
mechanisms, we investigated genomics, transcriptomics, epige-
netics, and proteomics with clinical and pathological data. The
predictors of chemotherapy response in this patient cohort were:
a large proportion of the genome under allelic imbalance, a high
number of indels, a high number of SBS5 mutations, somatic
mutations in BRCA2. Furthermore, the Ba/Sq gene expression
subtype seemed to suppress chemotherapy efficacy. In addition,
we observed that immune infiltrated and excluded subtypes, and
elevated PD-1 protein expression were associated with che-
motherapy response. Consequently, chemotherapy response is
associated with a multitude of parameters.

Cisplatin exerts its cytotoxic properties by formation of DNA
cross-links, which inhibit DNA replication and transcription,
consequently promoting cell death. DDR mechanisms play an
important role in the repair of the cytotoxic DNA damage26.
ERCC2, a key component in the nucleotide excision repair
complex, has been associated with improved response to
cisplatin-based chemotherapy in MIBC10. Similarly, mutations in
other DDR related genes have been associated with response to
chemotherapy in MIBC9,11. Here, we found mutations in the

homologous recombination associated gene BRCA2 to be asso-
ciated with elevated chemotherapy response rate. This is in
line with findings from ovarian cancer27. A recent study reported
that germline BRCA2 and other DDR gene mutations were
frequently observed in patients with BC28. Clinical trials
investigating the use of PARP inhibitors in patients with meta-
static BC and somatic or germline BRCA2 or other DDR muta-
tions are currently ongoing (NCT03397394, NCT03448718, and
NCT03375307). In this study, BRCA2 mutated tumors were,
similar to ERCC2 mutated tumors, associated with high numbers
of mutations in a SBS5 context, indicating that this mutational
signature is an indicator of a DDR-deficient tumor that may be
more sensitive to chemotherapy. This is also in line with our
findings that ERCC2 mutations per se were not associated with
treatment response in this cohort - but the SBS5 mutational
signature was.

We analyzed primary tumor samples from patients receiving
both immediate NAC and later first-line treatment for metastatic
disease. Previous studies have identified extensive temporal het-
erogeneity between primary tumors and metastatic lesions29,30.
Here we demonstrated that the majority of mutations in the
primary tumors were conserved and clonal in the metastatic
lesions. However, we also observed a high number of novel
mutations at low allele frequencies in the metastatic lesions. These
observations could reflect overall high similarity to the primary
tumors but with concurrent development of multiple novel
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subclones. This observation might be impacted by the fact that
DNA from primary tumors was extracted from frozen tissue
while DNA from metastatic lesions was extracted from formalin-
fixed paraffin embedded (FFPE) tissue. The usage of different
WES library pipelines might also have impacted these observa-
tions, however our analysis only considers genomic positions with

sufficient data across all samples in order to minimize the impact
of potential systematic differences.

Previous studies comparing gene expression subtypes to che-
motherapy response have shown conflicting results. Choi et al.
found similar response rates for basal and luminal tumors and a
lower response rate for p53-like tumors13. Seiler et al. showed
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increased survival for patients with basal tumors in a NAC treated
cohort compared to the TCGA cohort14. A recent meta analysis
found no significant difference in response rates between sub-
types15. However, in this study, we observed a lower response rate
for patients with basal tumors. The conflicting observations could
indicate that chemotherapy response is governed by a multitude
of factors and that integration with other data types might be
necessary to understand the biology behind response.

Platinum-based chemotherapy is known to induce immuno-
genic cell death, which ultimately improves anticancer effects of
cisplatin through increased antigen presentation and the follow-
ing T cell response16,22. In the present study, we showed that a
high fraction of intratumoral and peritumoral PD-1 positive cells
correlated with treatment response, whereas no association
between PD-L1 and response was observed. High PD-1 expres-
sion, associated with activated T-cells, B-cells, macrophages, and
NK-cells31, may indicate the presence of an activated pretreat-
ment antitumor immune response that further enhances treat-
ment efficiency. This theory is supported by our findings that
immune infiltrated and excluded subtypes had a better treatment
outcome - in fact, tumors with a high peritumoral PD-1
expression showed the best response rates. Consequently, these
patients may benefit from a combination of immunotherapy and
chemotherapy, however additional studies are needed to fully
establish the predictive value of PD-1 expression in association to
chemotherapy response.

This study is limited by partially overlapping multi-omics
analyses. Including both patients receiving chemotherapy in the
neoadjuvant setting (i.e. evaluated by pathologic response in the
primary tumor) and patients with advanced disease (i.e., eval-
uated by RECIST 1.1) represent another inherent limitation of the
present study. Although pathological downstaging has been used
for evaluating NAC response in several studies3,32, it is not
without limitation, including the potential impact of previous
TURB-T on the rate of downstaging. Overall, our results highlight
several molecular correlates of chemotherapy response and
importantly, the integration of genomic instability and gene
expression subtypes identified patient groups with vastly different
response rates. If successfully validated in future prospective
trials, these findings could aid in selecting patients with a high
probability of treatment response and potentially minimize the
current overtreatment of patients. Prospective validation is cur-
rently ongoing (NCT04138628).

Methods
Patient details. A total of 300 patients with BC receiving chemotherapy were
included in the study; 62 received NAC before cystectomy (CX) and 245 received
first-line chemotherapy upon detection of locally-advanced (T4b) or metastatic
disease (Supplementary Fig. 1a). Treatments were carried out according to Danish
National guidelines, which adhere to the European Guidelines for BC33. Cisplatin-

based chemotherapy was administered in ~98% of cases, however, for the purpose
of this study no distinction was made between the different chemotherapy regi-
mens described in Supplementary Data 1. Pretreatment staging was based on cross-
sectional imaging (baseline) and pathological assessment of TURB-T (transurethral
resection of bladder tumor) specimen. NAC treatment response was defined as
pathological non-invasive downstaging (≤pTa,CIS,N0) based on examination of
the CX specimen. First-line treatment response was defined as complete (CR) or
partial response (PR) based on post-treatment cross-sectional imaging according to
the RECIST 1.1 guidelines (Response Evaluation Criteria in Solid Tumors)34. 55.5%
(136/245 patients) had an intact bladder at the time of first-line treatment. Post-
treatment pathological staging of the residual tumor was evaluated in patients with
radiologic CR (n= 34), and pathological downstaging to pTa or pT0 was required
to achieve definitive CR. Pre- and post-treatment pathological staging is described
in Supplementary Data 1. Patients were selected to represent all response groups.
Summarized clinical, histopathological and treatment information is available in
Supplementary Tables 1 and 2. Treatment response was observed for ~57% of
patients (n= 172/300, NAC: ~63%, first-line: ~55%). Complete downstaging
(pT0N0) following NAC treatment was observed in 52% of cases. NAC treated
cases represent a very homogeneous cohort based on pre-therapeutic T-stage, and
the administered chemotherapy regimen (Supplementary Table 2), which could
explain the difference in observed treatment response compared to previous stu-
dies35–37.

Informed written consent to take part in future research projects was obtained
from all patients, and the specific project was approved by the National Committee
on Health Research Ethics (#1706291). Biological specimens from TURB-T or
metastatic lesions collected between 1995 and 2017 were provided by the
Departments of Urology, Aarhus University Hospital and Departments of
Pathology at Aarhus University Hospital, Randers Hospital, Aalborg University
Hospital, Viborg/Holstebro Hospital, Sønderborg Hospital, Vejle Hospital, and
Esbjerg Hospital. Study data were collected and managed using REDCap electronic
data capture tools hosted at Aarhus University38.

Tissue microarrays. Tissue microarrays (TMA) from three MIBC cohorts were
included in the study, representing 184 patients in total. The TMAs consisted of up
to six 1.0 mm core biopsies per patient. All core biopsies were taken from the most
representative tumor area, selected by a trained pathologist.

Nucleotide extraction procedures. Tumor tissue was snap frozen in liquid
nitrogen and stored at −80 °C or was formalin fixed and paraffin embedded
(FFPE). Hematoxylin and eosin stained overview sections (top and bottom) were
evaluated for the presence of carcinoma cells. DNA was extracted using the
Puregene DNA purification kit (Gentra Systems) or using the QIAamp DNA FFPE
tissue kit (Qiagen). DNA was extracted from peripheral blood leukocytes from all
patients using the QIAsymphony DSP DNA midi kit (QIAGEN, cat#937255). RNA
was quantified using an Infinite 200 PRO NanoQuant spectrophotometer (Tecan).
RNA integrity was assessed using a 2100 Bioanalyzer (Agilent Technologies).

Whole exome sequencing. Libraries of tumor and matching germline DNA were
prepared using 100–500 ng DNA and processed using the pipeline available from
Roche Nimblegen (see Supplementary Data 3 for details). DNA concentration was
calculated using a Qubit 3.0 fluorometer (ThermoFisher). WES library construction
was made using the KAPA Hyper Library Kit (Kapa Biosystems, Roche). The
libraries were sequenced (Paired end 2 × 75 bp or 2 × 150) using the Illumina
NextSeq 500 platform. Due to limited DNA yield from metastatic samples, WES
for these was performed using 50 ng DNA and the Twist Enzymatic Fragmentation
Library prep and Human Core Exome Capture kit (Twist Bioscience, PN 100803).
Raw sequencing data was initially processed using bcl2fastq2 and Trim Galore!.
FastQ files were processed according to the GATK Best Practices: Alignment using
bwa-mem, marking of duplicate reads using Picard, base recalibration using

Fig. 6 Immune tumor microenvironment analysis by spatial proteomics. Immunostaining performed on bladder cancer tissue microarrays from 184
patients. All protein measurements were performed once for each distinct sample. a Staining results shown for multiplex immunofluorescence (mIF) panel
1 and PD-1 with corresponding image analysis application (APP) of four tumors representing each immune subtype and high PD-1 expression, respectively.
Red dashed lines divide tissue into intratumoral and peritumoral regions of interest. Scale bar: 20 µm. b Spatial organisation of immune cells and immune
evasion mechanisms stratified by immune subtypes. Heatmap shows z-scores and the barplot the mean+ SD immune scores (IS), cell percentages, or H-
score [1 × (% cells low intensity)+ 2 × (% cells moderate intensity)+ 3 × (% cells high intensity)] for MHC-expression on carcinoma cells. Asterisks
denote the barplot representing the H-score. Points represent the corresponding data points. c Immune subtypes compared to chemotherapy response.
d Kaplan–Meier survival curves showing overall survival (OS) stratified by immune subtypes. e–g Intratumoral and peritumoral fractions of immune
evasion mechanisms (PD-1, PD-L1, MHC) compared to chemotherapy response. h Intratumoral combined PD-1/PD-L1 expression stratified by
chemotherapy response. PD-1 high/PD-L1 low was compared to PD-1 high/PD-L1 high, PD-1 low/ PD-L1 low and PD-1 low/PD-L1 high combined.
i–k Relationship between immune evasion mechanisms and immune subtypes. Statistical significance was assessed using a chi-square test for categorical
variables, a Wilcoxon rank-sum test for continuous variables and a log-rank test for comparing survival curves. For all boxplots, the center line represents
the median, box hinges represent first and third quartiles, whiskers represent ±1.5 × interquartile range (IQR) and points represent outliers. Source data are
provided as a Source data file.
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GATK, quality metrics were assessed using Picard. Mutations were identified using
MuTect2 with default parameters except the threshold for maximum alternate
alleles in the germline was raised. A custom filter selecting variants only vastly
more present in the tumor and in regions with low noise, was subsequently
applied39. Furthermore, variants identified by MuTect2 that did not pass the built-

in filters were reintroduced if they were identified with high confidence using
VarScan240 (pileups generated using samtools41). All somatic alterations were
annotated using SnpEff21 and hg19 build. We used the four predicted impact
categories defined by SnpEff to filter alterations with high impact (frameshift
variant, start codon lost or stop codon gained or lost, etc) or moderate impact
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(missense variation, inframe insertion or deletion, etc) from low impact (mainly
synonymous variant) and modifier impact (intergenic or intron variant, etc.).

Neoantigen prediction. Polysolver42 was used to predict germline alleles of class I
HLA-A, B, and C genes from the WES of the germline samples. The MuPeXI
webserver43 was then used to extract 8 to 11 length peptides around missense
mutations, indels and frameshift mutations from the somatic VCF files and all
mutant peptides with a binding prediction to MHC below 2% (weak binders) from
NetMHCpan44 were retained as neoantigens.

Copy number alterations. Custom Illumina SNP arrays (~760k positions) were
produced for 49 patients (tumor+ germline DNA) in order to assess copy number
alterations. Genotyping, logR Ratio (LRR) and B-allele-fraction (BAF) were cor-
rected and normalized using the Genotyping module from GenomeStudio 2.0
(Illumina) and all positions with cluster separation >0.75 were exported (594k
SNPs) for further analysis. The R package ASCAT45 was used for segmentation of
the genome but various tumor DNA purities together with high heterogeneity
made it difficult to obtain reliable somatic copy number estimates. Therefore, only
the raw-segmented BAF data was used to define genomic regions with allelic
imbalance. A sample-specific threshold was defined corresponding to a third of the
max BAF segmented value (removing outliers). Regions with strong imbalance
reflect genomic regions with either a loss of heterozygosity due to a loss allele (copy
number loss) or due to an amplification of only one allele (imbalanced copy
number gain) in most of the tumor cells.

Mutational signature analysis and microsatellite instability. SNVs and their
trinucleotide context were subjected to mutational signature analysis using R
packages SomaticSignatures46 and MutationalPatterns47. Only samples with more
than 100 SNVs were included to ensure robustness of the signature decomposition
(162/165 samples). Trinucleotide patterns for COSMIC signatures (v3) were
obtained and used for analysis of the contribution of the four previously defined
BC associated signatures48. Given the cohort size of previous studies of mutational
signatures and the consistency for mutational signatures identified in BC, we
employed this approach instead of performing de novo deconvolution. To ensure
the resulting contribution of mutational signatures was representative of the
observed mutational spectrum, the resulting trinucleotide mutational profile for
every sample was compared to the original profile and only samples with a cosine
similarity above 0.9 were considered (142/162 samples). Mutational signature-
based clusters were defined based on the dominant signature—SBS1, SBS5 or the
APOBEC signatures (SBS2 and 13). For volcano plots, only genes mutated in more
than 5% of the relevant cohort were considered. Only mutations with high or
moderate impact (based on SnpEff annotation) on the resulting protein were
included in this analysis. To account for varying mutation burdens across samples
and genes, a permutation test20 was applied to assess significance. Initially, p-values
(p_obs) were calculated for every gene using a Wilcoxon rank-sum test. A matrix
consisting of samples as columns and genes as rows and the appropriate mutation
status inserted, was generated and permuted using the curve_ball function pre-
sented by Strona et al.49 P-values (p_perm) were then calculated using a Wilcoxon
rank-sum test for every gene in every permuted matrix and the final p-value was
calculated as the fraction of p_perm smaller than p_obs. TCGA data were pro-
cessed similarly for analyses related to mutational signatures. MSI status was
inferred using MSIsensor50.

Damaging DNA damage response mutations. Missense mutations in genes
related to DDR were analyzed for potentially damaging effects using Polyphen218

and MutationAssessor19. Mutations identified as possibly damaging/probably
damaging or medium/high in PolyPhen2 and MutationAssessor, respectively, were
considered damaging. All loss of function mutations were considered damaging.

Comparison of primary tumors and metastatic lesions. For each patient, we
called mutations using MuTect2 (default parameters) by comparing all available
samples (primary tumor and metastatic lesions) to the germline. However, a
mutation might be called in e.g. the primary tumor and not quite reach the
threshold of being called in a metastatic lesion. We, therefore, combined all called
mutations for each patient and assessed the presence of said mutations in all
relevant bam files using bam-readcount (only reads and bases with high quality
were considered). Based on the minimum observed VAF for a mutation across all
relevant samples, we calculated the minimum required read depth to observe it and
kept only mutations with sufficient read depth in all relevant samples.

RNA sequencing. RNA-seq was performed using the QuantSeq kit FWD HT kit
(Lexogen) using 500 ng input RNA. The method generates 3′ count data from
polyadenylated RNA and only one fragment is assessed per transcript ensuring
highly accurate gene expression values. The process was carried out according to
the manufacturer for RNA procured from frozen and FFPE material. The
QuantSeq libraries were sequenced (Single end 1 × 75 bp) using the Illumina
NextSeq 500 platform.Salmon51 was used to quantify the amount of each transcript
using annotation from GRCh38 for cDNA and non-coding RNA (ncRNA). The R-

packages, tximport52 and edgeR53, were used to respectively summarize the
expression at gene-level and normalize the data.

Samples were classified according to the six consensus classes of MIBC using
the R-based consensus MIBC classification tool (n= 121)15. All samples were used
for the expression subtyping but only the fresh frozen samples (n= 96) were used
for further analysis.

Analysis of regulon activity. We investigated transcriptional regulatory networks
consisting of transcription factors and associated induced/repressed target genes
using R package RTN54. Our analysis was confined to 23 transcription factors
previously associated with BC (Supplementary Table 4)5,55. In brief, a normalized
gene expression matrix was used to infer associations between transcription factors
and regulated target genes. Unstable associations were removed by bootstrap
analysis. A gene can be associated with more than one transcription factor at this
point and the weakest interaction was, therefore, removed. Finally, the activity of all
regulons was assessed using a two-tailed gene set enrichment analysis. We fur-
thermore performed cell type enrichment analysis using xCell with the same
normalized gene expression matrix as above as input56.

Immune cell deconvolution. The presence of immune cells was evaluated based on
the expression of predefined gene lists for every immune cell type of interest57 (for
CD4 cells58). A score for every cell type was calculated as the mean expression for
all genes associated with the cell type in question. An overall immune score was
defined as the sum of all immune cell type scores.

DNA methylation. DNA methylation analysis was performed using DNA from 72
patients. We used 500 ng genomic DNA for bisulfite conversion followed by whole-
genome amplification prior to hybridization to EPIC BeadChip (Illumina, San
Diego, CA) overnight as described by the manufacturer and then scanned with the
Illumina iSCAN system. Data were imported and normalized using the ChAMP R
package59. Methylation microarrays data (450k) was retrieved from the TCGA
project for normal bladder tissue and from60 for leukocytes. We identified 5000
tumor-associated hyper- and 5000 hypomethylated CpG sites5. For the tumor-
associated hypermethylated sites, we selected 5000 CpG autosomal sites unme-
thylated in normal bladder tissue and in leukocytes, present on the EPIC platform
and methylated in at least four patients. Unsupervised consensus clustering61 was
used with each set and for both cases, three major clusters were found.

All probes annotated as TSS1500, TSS200 or 5′UTR were summarized to define
the promoter methylation value and all probes annotated as Body were
summarized to define the gene body methylation value for all genes.

Immunofluorescence, immunohistochemistry and imaging. Two TMA sections
per patient (3 μm) were analyzed using multiplex immunofluorescence to detect
the expression of markers in Panel 1 (CD3, CD8, FOXP3) and Panel 2 (CD20,
CD68, CD163, HLA-ABC). Primary antibodies are listed in Supplementary Data 2.
Staining was carried out on the Discovery ULTRA Staining instrument (Ventana
Medical Systems) using Ventana Medical Systems reagents except as noted. TMA
sections were deparaffinized using EZ Prep solution (cat#950-102) for 16 min at 72
°C, followed by heat-induced epitope retrieval for antigen unmasking with
CC1 solution (cat#950-124) at high temperature (e.g., 95–100 °C) for 64 min.
Endogenous peroxidase activity was blocked using DISC inhibitor reagent
(cat#760-4840). For fluorescent detection, the first primary antibody was incubated
followed by detection using a goat anti-mouse (GaM-HRP, 12 min; OmniMap anti-
Ms HRP (RUO), DISCOVERY; cat#760-4310) or goat anti-rabbit (GaR-HRP; 16
min; OmniMap anti-Rs HRP (RUO), DISCOVERY; cat#760-4311) secondary
antibody conjugated to horseradish peroxidase (HRP). After two rinses with
reaction buffer (cat#950-300), the appropriate tyramide conjugated fluorophore
(Ty-flour, listed in Supplementary Data 2) was added for 4 min with the applica-
tion of 0.01% H2O2 (DISCOVERY reagent; cat#760-244). For the following 8 min
the Ty-flour reacts with the HRP in the primary antibody/secondary antibody
complex, which leads to oxidation and subsequent covalent binding of Ty-fluor to
tyrosine residues surrounding the antigens. Finally, we performed a heat-mediated
stripping of the antibodies (100 °C for 20 min in CC2 buffer, cat#950-223). The
above processing cycle was repeated sequentially two (Panel 1) or three (Panel 2)
more times using a different antibody and fluorophore. VECTAshield anti-fade
mounting medium with DAPI (cat#H-1200) was added as a nuclear counterstain.
Following fluorophore imaging using the Hamamatsu NanoZoomer s60 scanner
(Meyers Instruments), immunostaining on the same section was performed to
study spatial organization. Intratumoral regions were identified using the antibody
PAN-cytokeratin (Clone A1/A3, 1:100; 16 min; Dako Agilent; cat#GA005361-2).
Additionally, three TMA sections per patient were obtained and immunohis-
tochemistry was performed with antibodies directed against PD-1(Clone NAT105;
ready-to-use; 32 min; cat#760-4895), PD-L1(Clone NAT105; ready-to-use, 60 min;
cat#790-4905) and PAN-cytokeratin (Clone A1/A3, 1:100; 16 min; Dako Agilent;
cat#GA005361-2). For bright-field detection, slides were developed using the
Ventanas Detection Kits: ultraView Universal 3,3′-Diaminobenzidin (cat#760-500)
according to the manufacturer’s instructions. Slides were then counterstained with
hematoxylin II (cat#790-2208) for 8 min, followed by Bluing reagent (cat#760-
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2037) for 4 min. Bright-field imaging was performed in the Hamamatsu Nano-
zoomer 2.0 HT (Meyers Instruments).

Automated quantification of scanned images. Automated quantification of
selected markers was carried out using the Visiopharm software (Visiopharm A/S,
Hørsholm, Denmark). For each tissue core, the fluorescence image was aligned to
its corresponding chromogenic (cytokeratin) stained image using the Visiopharm
Tissue Align module (Supplementary Fig. 7a). Image analysis protocol packages
(APPs) were developed in order to automatically 1) Define intratumoral and
peritumoral regions of interest (Supplementary Fig. 7b), 2) Calculate fractions of
immune cell subsets based on co-localization of selected markers (Supplementary
Fig. 7c), 3) Calculate H-score [1 × (% cells low intensity)+ 2 × (% cells moderate
intensity)+ 3 × (% cells high intensity)] for MHC-expression on carcinoma cells.
4) Calculate fractions of PD-1/PD-L1 positive cells. For panel 2 and PD-1 staining,
the intratumoral and peritumoral regions of interest were manually defined by
visual inspections. For each selected marker, a visually defined threshold was set to
differentiate between positive and unspecific staining. The following scoring
algorithms were applied to calculate cell fractions (here shown for CTLs (CD8+
CD3+ FOXP3-) as an example):

Intratumoral CTLs= CTLs counts intratumoral/total cell count intratumoral
Peritumoral CTLs=CTLs counts peritumoral/total cell count peritumoral.

Immune subtypes and PD-1/PD-L1 axis. Immune Scores (IS) for each region of
interest were calculated based on the sum of immune cell fractions (T-Helper,
CTLs, Tregs, B-cells, M1 and M2 macrophages) present in the specific region. The
IS were then split at the median to form high and low groups. We classified our
three immune subtypes as follows: (1) Desert: Intratumoral ISlow+ Peritumoral
ISlow, (2) Excluded: Intratumoral ISlow+ Peritumoral IShigh, (3) Infiltrated: Intra-
tumoral IShigh+ Peritumoral IShigh or Intratumoral IShigh+ Peritumoral ISlow. For
evaluation of the combined PD-1/PD-L1 axis (Fig. 6h), samples were dichotomized
as positive and negative by the median.

Statistics and reproducibility. All multi-omics measurements were performed
once for each distinct sample. Assessment of statistical significance included
Fisher’s exact test or chi-square test for categorical variables and Wilcoxon rank-
sum test for continuous variables. Significance levels were adjusted for multiple
testing using the Bonferroni method for Figs. 4d, h, 5c, 6I, j. Cumulative survival
analysis was performed using the Kaplan–Meier method, and the log-rank test was
used to compare the curves (R packages survminer and survival). Overall survival
(OS) was defined as time from MIBC diagnosis to death or end of follow-up. Eight
patients received both NAC and first-line treatment for metastatic disease, in these
cases, the first-line response evaluation was used for statistical assessment of
treatment response. Genomic instability groups were defined by the number of
SBS5 mutations, indels and allelic imbalance and BRCA2 mutation status. If
patients had numbers above the median for SBS5 mutations, indels or allelic
imbalance or a BRCA2 mutation, they were assigned to the group of high genomic
instability. The protein immune score (IS), defined as the sum of immune cell
fractions, was dichotomized based on the median.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw sequencing, SNP microarray and methylation data are deposited and available under
controlled access at the European Genome-phenome Archive (EGA), which is hosted by
the European Bioinformatics Institute (EBI) and the Centre for Genomic Regulation
(CRG). Study accession numbers are: EGAS00001004507 (WES), EGAS00001004519
(SNP data), EGAS00001004505 (RNA-Seq), and EGAS00001004515 (EPIC BeadChip
methylation data). Normalized mRNA read counts are available in Supplementary
Data 4. Source data are provided with this paper. TCGA WES, methylation and clinical
data was accessed at [https://portal.gdc.cancer.gov/projects/TCGA-BLCA]. 450k
methylation data for leukocytes were retrieved from the Gene Expression Omnibus
(Series GSE32148). Only samples annotated as normal peripheral blood were used. The
remaining data are available within the Article file, Supplementary Information or
available from the authors upon request. Source data are provided with this paper.
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